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        Abstract.  The problem of imbalanced training data 
in supervised pattern recognition methods is receiving 
growing attention. Imbalanced data means that one 
class is much more represented than the others in the 
training sample. It has been observed that this situation, 
which arises in several practical domains, may produce 
an important deterioration of the classification 
accuracy, in particular with patterns belonging to the 
less represented classes. In the present paper, we review 
several aspects related to this subject. We report 
experimental results that point at the convenience of 
correctly downsizing the majority class while 
simultaneously employing a weighted distance function. 
Novel procedures for editing-condensing the training 
sample are also introduced. 
 
1. INTRODUCTION 
Design of supervised pattern recognition methods is 
based on a training sample: a collection of examples 
previously analyzed by a human expert. Performance of 
the resulting classification system depends on the 
quantity and the quality of the information contained in 
the training sample. This dependence is particularly 
strong in the case of non-parametric classifiers since 
these systems do not rest upon any probabilistic 
assumption about the class models. Researchers in the 
pattern recognition area have very early realized that the 
training sample must satisfy some requirements in order 
to guarantee good classification results. From the start, 
two assumptions were established: 
1. The set of c classes considered in the training set 

covers the whole space of the relevant classes. 
2. The training instances used to teach the classifier 

how to identify each class are actually members of 
that class. 

   As the number of practical applications of these 
methods grows, obtained experience has gradually 
indicated the necessity of some other requisites for the 
system to reach satisfactory results. Among them: 
3. The training sample represents the population (all 

strata in the population must be represented in the 
sample and in the same proportion as they occur in 
the population). 

4. The considered features must permit 
discrimination. 

5. The size/dimensionality rate of the sample is high 
enough (5-10 training patterns for each attribute). 

   Recently, concern has arisen about the complications 
produced by imbalance in the training sample. A training 
sample is said to be imbalanced when one of the classes 
(the minority one) is heavily under-represented in 
comparison to the other (the majority) class. For 
simplicity, and following the common published 
practice, we consider here only two-class cases. This 
imbalanced situation is usual in several real domains 
where the cost of misclassification of patterns from the 
minority class far outweighs the other  type of cost [1]. 
   It has been observed that imbalanced training samples 
may cause a significant deterioration in the performance 
attainable by supervised methods. Most of the attempts 
at addressing this problem can be sorted into three 
categories [2]: 
a) Over-sampling (re-sampling some training patterns 

multiple times) the minority class so as to match 
the size of the other class. 

b) Downsizing the majority class so as to match the size 
of the other class. 

c) Internally biasing the discrimination based process so 
as to compensate for the class imbalance. 

   It is also currently argued whether accuracy is the best 
criterion to assess the classifier’s performance in 
imbalanced domains and several other criteria have been 
proposed. Perhaps the most widely accepted is the 
geometric mean, g=(a+· a-)½, where a+ is the accuracy on 
cases from the minority class and a- is the accuracy on 
cases from the majority one.  
   In the present work, we present preliminary results of a 
more extensive research that we are conducting to 
explore all the issues linked to the imbalanced training 
samples. We employ the widespread used 1-NN (Nearest 
Neighbor) rule, because of its well-known performance 
and its flexibility. Experimental results with real datasets 
are reported. 
 
 
2. EXPERIMENTED STRATEGIES 
The NN rule is a well-known supervised nonparametric 
classifier that combines its conceptual simplicity and an 
asymptotic error rate conveniently bounded in terms of 
the optimal Bayes error. In its classical manifestation, 
given a set of n previously labeled prototypes or training 
sample (TS), this classifier assigns any given sample to 
the class indicated by the label of the closest prototype in 
the TS. More generally, the k-NN rule maps any sample 



to the pattern class most frequently represented among 
its k closest neighbors.  
   Nevertheless, the NN classifiers also suffer from 
certain drawbacks. The performance of these rules, as 
with any non-parametric method, is extremely sensitive 
to incorrectness or imperfections in the training sample. 
On the other hand, its applicability to real-time 
problems, with a large set of training patterns of high 
dimensionality, can become prohibitive because of the 
immense computational loads required for searching the 
nearest neighbors of each new pattern in the training 
sample. 
   In this initial phase of our research, we focus on 
techniques of the categories b) and c), as above-
mentioned. We are also assessing the benefits of 
employing a combination of methods of the two types of 
strategies. 
   For downsizing the majority class we have tried with 
three different algorithms. Two of them are in the group 
of the Editing techniques: the now classical Wilson’s 
proposal [3] and the k-NCN (Nearest Centroid 
Neighborhood; [4]). Tomek [5] proposed to repeatedly 
apply Wilson’s method while k-NCN is used here for the 
first time in that way. These two techniques are aimed at 
filtering the training sample by removal of the noisy or 
atypical elements. A noisy pattern is defined as that 
element whose label does not coincide with the most 
represented class in its neighborhood. Wilson’s idea and 
k-NCN editing differ to each other in the way they define 
the neighborhood concept. Benefits of the two editing 
techniques by increasing the classification accuracy of 
the NN rule have been corroborated (e.g., [6]). However, 
they do not produce an important amount of removed 
patterns. 
   On the other hand, Modified Selective [7] is an 
algorithm specifically designed for reducing the training 
sample size. The algorithm is based on the idea of a 
consistent subset [8] and, with a rather simple algorithm 
(in terms of computation time and memory 
requirements), it guarantees a satisfactory approximation 
to the decision boundaries as they are defined by the 
whole training sample. Experimental comparison with 
several other pruning algorithms [7] corroborated this 
statement. 
   Tomek [5] very early mentioned the convenience of 
combining Edition with the consistent subset: “when the 
edited set is processed by CNN (Hart’s algorithm) or 
other methods, the result in reduction is much more 
significant than that attainable on the original set”. 
Employment of these compound techniques has been 
often promoted and proved in several practical 
applications. For instance, it has been employed with the 
Nearest Neighbor rule [9] and with the Multi-Layer 
Perceptron [10]. In the experiments reported here we 
have employed the combination Wilson + Modified 
Selective and, for the first time, k-NCN + Modified 
Selective. 
   As a technique for internally biasing the discrimination 
procedure, we have experimented with a modification of 
the Euclidean metric that can be regarded as a weighted 

distance function. With this modification, when 
classification of a new pattern Y is attempted, and in the 
search through the training sample of its nearest 
neighbor, the following quantity must be computed for 
each training instance: 
                  dW(Y, x0) = (ni/n)1/m dE(Y,x0) 
where: 
     x0 is a training pattern representing class i. 
     ni is the number of training patterns from class i. 
     n is the training sample size 
     m is the dimensionality of the feature space 
     dE( . ) is the Euclidean metric. 
   The idea is to compensate for the imbalance in the 
training sample without actually altering the imbalance. 
Weights are assigned, unlike in the usual weighted k-NN 
rule proposals, to the respective classes and not to the 
individual prototypes. In that way, since the weighting 
factor is greater for the majority class than for the 
minority one, distance values to training instances of the 
minority class are reduced much more than the distance 
values to training examples of the majority class. This 
produces a tendency for the new patterns to find their 
nearest neighbor among the cases of the minority class, 
increasing the accuracy in that class. 
   The three downsizing algorithms above-mentioned are 
explained in more detail in the following subsections. 

2.1 Wilson’s editing 
This corresponds to the first proposal to edit the NN rule. 
In a few words, it consists of applying the k-NN 
classifier to estimate the class label of all prototypes in 
the TS and discard those samples whose class label does 
not agree with the class associated with the largest 
number of the k neighbors. 

Thus, the Wilson’s editing procedure can be written as 
follows: 
• Let S = X. (X is the original TS, and S will be the 

resulting or edited TS) 

• For each xi in X do: 
a) Find the k-NN of xi in X − {xi}. 

b) Discard xi from S if there is a majority of 
NNs from a different class.  

2.2 k-NCN editing 
This is a way of Wilson’s algorithm particularized for 
the case of using the k-NCN classification rule to 
estimate the class label of prototypes. 
It is worth mentioning that the k-NCN classifier is 
thought to obtain a more accurate information about 
prototypes and more specially, for those close to 
decision boundaries. In general, this is expected to result 
in a practical improvement of the corresponding editing 
procedure. The k-NCN editing algorithm consists of the 
following steps: 
• Let S = X.  

• For each xi in X do: 

a) Find the k-NCN of xi in X − {xi}. 



               b) Discard xi from S if there is a majority of 
NCNs from a different class. 

The k-NCN of xi are searched in T such that: 
a) They are as near to xi as possible 
b) Their centroid is also as close to xi as 

possible. 
Both conditions can be satisfied through an iterative 
procedure [11] in the following way: 
    --The first neighbor of xi is its nearest neighbor, q1 
   --The jth neighbor qj, j > 1, is such that the centroid of 

this and previously selected neighbors, q1, …,qj-1, is 
the closest to xi 

This definition gives rise to a neighborhood in which 
both closeness and spatial distribution of neighbors are 
taken into account because of the centroid criterion. 
 
2.3 Modified Selective algorithm 
According to Hart’s statement, the Condensed Subset 
(CS) is a subset S of the TS such that every member of 
TS is closer to a member of S of the same class than to a 
member of S of a different class. Ritter et al. [12] have 
changed this concept in their Selective Subset (SS). They 
defined the SS as that subset S such that every member 
of TS must be closer to a member of S of the same class 
than to a member of TS (instead of S) of a different 
class. Their purpose is to eliminate the order-dependence 
of the building algorithm. For getting the SS, an 
algorithm too extensive and complicated (in memory and 
execution time) to be described here is proposed. As 
Ritter et al. have recognized, their algorithm does not 
necessarily conduct to a unique solution. Moreover, 
although they stated the importance of selecting 
“samples near the decision boundaries”, this requisite is 
not included in the criteria serving as a basis for their SS. 
After describing Ri  as the set of all related neighbors to 
the training pattern xi, that is,  the set of all xj in TS such 
that xj is of the same class of xi and is closer to xi than the 
nearest neighbor of xi in TS of a different class than xi, 

they merely defined their SS as “the smallest subset 
containing at least one member of Ri for each training 
pattern xi. As a natural consequence, the algorithm they 
established does not guarantee the best approximation to 
the decision boundary. 
   The reduction technique employed in this work, the 
Modified Selective (MSS), rests upon a modification of 
the definition in the preceding paragraph. The MSS is 
defined as that subset of the TS containing, for every xi 
in TS, that element of its Ri that is the nearest to a class 
different than that of xi. Although the main purpose of 
this modification is to strengthen the condition to be 
fulfilled by the reduced subset in order to attain a best 
approximation to the decision boundaries, as a byproduct 
the resulting algorithm is much simpler than that 
proposed in the Selective approach. This algorithm, for 
the two-class case, consists of the following steps. Only 
the class 1 is considered, class 2 being afterwards 
processed in a similar way: 
   1. Let S = Ø. 
   2. Let x1, x2, ..., xn1 be the training cases of class 1. 

These instances are ordered such that D1 < 

D2 < ... < Dni where Di stands for the 
minimum distance from xi to the class 2. 

3. Place x1 in S. Put KN = n1 – 1. 
       For i = 2 to n1 do: 
           If d(x1, xi) < Di then {Ki = 0; KN = KN – 1;} 
                Else Ki = 1; 
4. For i = 2 to n1 begin I 
      a) Put IND = 0; If KN = 0 then exit; 
                        Else {If Ki = 1 then {Ki = 0; KN = KN – 1; 

Put xi in S; IND = 1;}} 
       b) For j = i +1 to n1 begin II 
              If (Kj = 1 and d(xi, xj) < Dj) then 
                                                       Kj = 0; KN = KN – 1; 

If IND = 0 then {IND = 1; Put xi in S;}} 
                                        End II;  
                             End I; 
     The first training instance, after they have been 
ordered in step 2, is always selected for the pruned 
subset (step 3) since it is the nearest to the other class 
and, at least, its own related neighbor. Also in step 3, all 
the other sets Ri where x1 is present are detected and 
marked by letting Ki = 0. KN is used for the current 
number of training cases still not represented (that is, 
none of its related neighbors is currently included) in S.  
In step 4 it is searched through the rest of the training 
prototypes (in increasing order of their distances to class 
2). The purpose is to look after those that must be 
incorporated to S either because they have not been 
represented by any previous instance or because they are 
related neighbors of a posterior (more far to the other 
class) not yet represented training case. IND is a flag that 
prevents duplication of an instance in S. 
 
3. EXPERIMENTAL RESULTS 
The experiments here reported were conducted with four 
real datasets taken from the UCI Repository [13]. In each 
dataset, five-fold cross validation was employed (80% 
for the training sample and 20% for a test set). Results to 
be presented hereafter represent the averaged values of 
the five replications. To facilitate comparison with other 
published results [14], in the Glass set the problem was 
transformed for discriminate class 7 against all the other 
classes and in the Vehicle dataset the task is to classify 
class 1 against all the others. Satimage dataset was also 
mapped to configure a two-class case, the training 
patterns of classes 1, 2, 3, 5 and 6 were joined to form a 
unique class and the original class 4 was left as the 
minority one. Descriptions of the datasets are in Table 1. 
     Several experiments were conducted with each 
dataset. Most of them are aimed at downsizing the 
majority class while filtering its noisy training elements 
and removing the redundant examples.  
    The following techniques were applied to the majority 
class: 

1. Modified Selective 
2. Wilson’s Editing 
3. Wilson’s Editing repeatedly 
4. Wilson’s Editing (once and repeatedly) in 

combination with Modified Selective 
5. k-NCN Editing 



6. k-NCN Editing repeatedly 
7. k-NCN Editing (once and repeatedly) in 

combination with Modified Selective. 
   The two latter techniques have been employed for the 
first time in the present work. Besides, and as a 
complementary exploration, Modified Selective, 
Wilson’s Editing and Wilson’s Editing combined with 
Modified Selective were applied to both classes in three 
of the datasets (minority class of the Glass dataset was 
excepted of the editing application for reasons to be 
discussed below). 
   In all the mentioned experiments, after processing the 
majority class (or both classes), patterns of the test set 
were classified according to the NN rule. Usual 
Euclidean metric as well as the proposed weighted 
distance was employed for these classification tasks. 
Averaged results of the g criterion are shown in Table 2.  
   The most interesting facts arising from the lecture of 
Table 2 are: 

1. The best results are always obtained when the 
weighted distance is employed for 
classification. In all datasets, this technique 
alone produces improvement in the g values. 

2. Benefits of the Wilson’s Editing are well known 
for increasing the classification accuracy. This 
beneficial effect is corroborated for the 
geometric mean. The same can be stated about 
the performance obtained when processing the 
training sample with the combination Wilson’s 
Editing + Modified Selective. 

3. Repeated application of k-NCN Editing shows 
similar or better results than those of the 
classical technique. In general, this editing 
algorithm allows more repetitions (the 
procedure is stopped when no further removals 
are produced or when a class becomes empty of 
training instances). However, these additional 
repetitions not always cause important changes. 
Combination k-NCN Editing +Modified 
Selective yields also good results. 

4.  Glass dataset suffers not only from the 
imbalance issue. In addition to that, the 
minority class is too small. Adequacy of the 
training sample size must be measured by 
considering the number of training cases of the 
smallest class and not that of the whole training 
sample. For the minority class in Glass dataset, 
the size/dimensionality rate is very low: 2.7 
examples for each attribute. Either more cases 
of this class are added to the training sample or 
the number of attributes is reduced by a 
convenient selection. For this reason, we did not 
try to carry out any kind of filtering of the 
minority class in this dataset. Nevertheless, the 
weighted distance produces an increase in the g 
value, albeit not very significant. 

5. In the other three datasets, exploration was done 
to evaluate the convenience of processing too 
the minority class, for removing noisy and 
redundant examples. Improvement was 

obtained in the Phoneme dataset when Wilson’s 
Editing was applied in both classes. A deeper 
study of this subject is required.  

   Table 3 presents a detailed analysis of the behavior of 
the Vehicle dataset with all the experimented variants. 
This dataset was selected for allowing comparison with 
the report in [14]. 
   The first thing to note in Table 3 is the fact that 
increase in a+ and in the g value means, in general, 
decrease of the values in a- and in overall accuracy. A 
similar situation is reported in [14]. These results are in 
contradiction with what should be expected: a classifier 
with good performance on cases from both classes. This 
issue deserves careful consideration. In some real 
applications, it may not be convenient to get an increase 
in the classification accuracy of the minority class (and 
in the geometric mean) at the cost of reducing this 
accuracy in the majority class and in the overall 
accuracy. Of course, that would depend on the 
misclassification costs of both types. 
   Downsizing the majority class cause radical changes in 
the proportions in which both classes are represented 
into the training sample.  However, these modifications 
permit to obtain better results, although the original 
proportions are kept in the corresponding test sets. That 
is, accuracy is improved when working with classifiers 
that have been trained with different class priors than the 
priors of the test cases. 
   As it usually happens, normal Wilson’s Editing 
procedure (in both classes) and the combination Wilson 
+ Modified Selective improve classification accuracy. 
The combination, besides, considerably reduces the 
sample size (only 12.8% of the original training sample 
for the Vehicle dataset). However, an important 
deterioration of the geometric mean value is produced 
with these techniques when used in the traditional way. 
   Superiority of the g values when employing the 
weighted distance over those obtained with the 
traditional Euclidean metric becomes less pronounced as 
the proportion of the minority class in the training 
sample is increased. 
 
4. PRELIMINARY CONCLUSIONS 
Replicating the minority class to eliminate imbalance in 
the training sample does not add new information to the 
system. Moreover, to work in that direction means to 
worsen the known computational burden of learning 
algorithms such as the Nearest Neighbor rule and the 
Multi-Layer Perceptron.  
   On the other hand, since downsizing the majority class 
can result in throwing away some useful information, 
this kind of process must be done carefully. Editing and 
pruning algorithms offer a good alternative for using this 
opportunity and to remove noisy and redundant training 
examples. In this work, experiments with some of these 
algorithms were, in general, successful. It has been 
shown that k-NCN editing, a relatively new technique, 
produces good results when applied repeatedly and that 
it yields a good combination with the Modified 
Selective.  The problem with all these techniques is that 



they do not permit control on the number of training 
cases to be removed. In that way, eliminated patterns can 
be too many or too few to adequately solve the 
imbalance problem. Genetic algorithms could be of 
interest, in particular that of Kuncheva and Jain [15] that 
address the selection of patterns and features 
simultaneously. Of course, it will be required to 
transform the algorithm to adapt it to the imbalance 
situation. 
   The Weighted distance showed itself as a good 
resource to transform the classification procedure for 
taking into account the disproportion of the different 
class representations. Other weighting factors must be 
studied. We have reported here evidence enough to 
advocate the necessity of researching the joint 
employment of strategies of different sorts.  
   One of the most promising research lines is based on 
the employment of a classifier ensemble [16]. That is, 
creating an ensemble with several classifiers and 
distributing the training sample to reach balance in each 
one of the resulting learning samples. We have started to 
explore in this direction and already with a very simple 
design and a majority-voting schema, interesting results 
have begun to appear. Geometric mean values have 
improved to 79.6 for the Satimage dataset and to 70.5 for 
the Vehicle one (see Table 2 for comparison).  The study 
of this subject involves a great variety of possibilities 
that we will attempt to cover in the next future. 
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 Training sample Test sample 
Dataset Features Class 1 Class 2 Class 1 Class 2 
Phoneme 5 1268 3054 318 764 
Satimage 36 500 4647 126 1162 
Glass 9 24 150 5 35 
Vehicle 18 170 508 42 126 

Table 1. Characterization of the datasets employed in the experiments (all of them with two classes) 

  



 Phoneme Sat image Glass Vehicle 
 A B A B A B A B 

Original TS 73.8 76.0 70.9 75.9 86.7 88.2 55.8 59.6 
Wilson’s Editing         

1st application 74.9 75.7 72.6 76.1 86.2 87.9 62.8 64.9 
2nd application 74.8 75.5 72.9 76.2 - - 62.8 64.8 
3rd application 74.6 75.3 73.0 76.2 - - 64.0 65.8 
4th application 74.6 75.3 - - - - - - 

Wilson + Selective         
1st application 74.5 72.4 74.0 74.2 86.1 86.2 65.7 65.6 
2nd application 74.6 72.6 74.2 74.3 - - 65.6 65.2 
3rd application 74.5 72.5 74.2 74.3 - - 65.8 65.7 
4th application 74.5 72.5 - - - - - - 

k-NCN Editing         
1st application 75.0 75.9 71.9 76.2 86.2 87.9 62.1 64.5 
2nd application 74.7 75.4 72.3 76.2 86.2 87.9 64.1 66.3 
3rd application 74.7 75.4 72.3 76.2 - - 65.2 67.4 
4th application 74.6 75.3 72.3 76.2 - - 66.2 68.3 
5th application 74.6 75.3 72.3 76.2 - - 65.8 68.0 

k-NCN + Selective         
1st application 74.9 71.9 73.7 74.2 85.7 86.2 65.6 64.8 
2nd application 71.6 71.9 74.4 74.8 85.7 86.2 66.2 65.8 
3rd application 74.6 72.1 74.4 74.8 - - 66.5 66.8 
4th application 74.6 72.1 74.4 74.8 - - 67.6 67.8 
5th application 74.6 72.1 74.4 74.8 - - 67.1 67.5 

Selective class 2 74.0 70.0 72.3 73.0 86.2 86.6 60.3 60.3 
Selective class 1-2 72.2 72.8 70.1 73.3 86.4 87.1 59.7 59.9 

Wilson both classes 73.8 76.7 66.4 68.8 - - 47.5 51.5 
W+S both classes 72.4 72.8 65.7 67.1 - - 50.1 51.5 

Table 2. Experimental results of the four datasets with the experimented techniques. Averaged values of the g criterion. Figures in 
columns A: results obtained when employing Euclidean distance. Figures in columns B: results obtained when employing the 

Weighted distance. Best results for each dataset in bold. 
 

 Euclidean distance Weighted distance 
 minority 

class (%) 
a+ a- g accuracy a+ a- g accuracy 

Original TS 25.1 37.6 82.8 55.8 71.5 45.2 78.5 59.6 70.2 
Wilson’s Editing          

1st application 27.8 50.5 78.2 62.8 71.3 56.2 75.0 64.9 70.3 
2nd application 28.5  52.4 75.2 62.8 69.5 57.6 72.8 64.8 69.0 
3rd application 28.6 54.8 74.7 64.0 69.7 59.5 72.7 65.8 69.4 

Wilson + Selective          
1st application 57.4 61.4 70.3 65.7 68.1 59.0 73.0 65.6 69.5 
2nd application 59.7 63.3 67.9 65.6 66.7 60.5 70.3 65.2 67.8 
3rd application 60.3 64.8 66.9 65.8 66.4 61.9 69.8 65.7 67.8 

k-NCN Editing          
1st application 27.8 48.6 79.4 62.1 71.8 54.8 75.9 64.5 70.7 
2nd application 28.5 53.8 76.3 64.1 70.8 60.0 73.3 66.3 70.1 
3rd application 28.6 56.7 75.4 65.2 70.8 62.4 72.7 67.4 70.2 
4th application 29.5 59.0 74.9 66.2 71.0 64.3 72.5 68.3 70.6 
5th application 29.6 59.0 74.1 65.8 70.4 64.3 71.9 68.0 70.0 

k-NCN + Selective          
1st application 57.3 60.5 71.1 65.6 68.5 57.1 73.5 64.8 69.5 
2nd application 59.9 64.3 68.1 66.2 67.2 61.0 71.0 65.8 68.5 
3rd application 62.0 66.2 66.8 66.5 66.7 64.3 69.5 66.8 68.3 
4th application 62.7 69.0 66.3 67.6 67.0 66.7 69.0 67.8 68.5 
5th application 62.8 69.0 65.6 67.1 66.3 66.7 68.3 67.5 67.9 

Selective class 2 49.9 47.6 76.3 60.3 69.1 47.6 76.3 60.3 69.1 
Selective class 1-2 42.0 44.8 79.5 59.7 70.8 46.2 77.7 59.9 69.8 

Wilson both classes 12.7 25.2 89.7 47.5 73.5 31.0 85.7 51.5 72.0 
W+S both classes 33.9 28.6 87.8 50.1 72.9 31.0 85.5 51.5 71.9 

Table 3. A more detailed report of the experimental results with the Vehicle dataset. a+ is the accuracy on cases from the minority 
class. a- is the accuracy on cases from the majority class. accuracy is the overall accuracy on the whole test set. 


